Exhibit 300 (BY2010) | | PART ONE | |------------------------------------|--------------------------------| | | OVERVIEW | | 1. Date of Submission: | 2008-09-08 | | 2. Agency: | 026 | | 3. Bureau: | 00 | | 4. Name of this Capital Asset: | KSC Shuttle Processing Support | | 5. Unique Project
Identifier: | 026-00-01-05-01-1425-00 | | 6. What kind of investment will th | nis be in FY2010? | Operations and Maintenance 7. What was the first budget year this investment was submitted to OMB? 8. Provide a brief summary and justification for this investment, including a brief description of how this closes in part or in whole an identified agency performance gap. Kennedy Space Center relies on converted Apollo infrastructure, facilities and equipment for Space Shuttle Processing. This investment enables the KSC infrastructure to operate properly. The Shuttle Processing Support (SPS) investment reduces life cycle cost of critical ground systems. The requirements for replacement of obsolete GSE allows support funding if the lifecycle cost of the replacement GSE is less than the projected lifecycle costs for existing GSE. The SPS project supports business needs of the Space Shuttle Program (SSP) by mitigating risks of critical facilities and equipment with a current replacement value in excess of \$3 Billion. Risk is mitigated by expending capital where necessary to fly the SSP safely. If not funded the SSP Process assumes additional risk against the APA, a likely 4-8 month manifest impact, and increased probability of launch delays/scrubs. As an example of the equipment impacted by this program, the existing Hydrogen Umbilical Mass Spectrometer (HUMS) Computer Command and Control system is over 10 years old and some of the VME cards are obsolete and no longer supported. The Launch Site Equipment (LSE) budget helps maintain this aged infrastructure. The SSP Integration Information Technology (IT) plan is a part of the Shuttle Program Operations Contract (SPOC) overall annual Level A and Level B (annual Fiscal Year) IT Plan deliverables to the SSP Chief Information Officer (CIO). Plans were reviewed and approved by the SSP CIO with concurrence from the Johnson Space Center CIO, KSC CIO and Marshall Space Flight Center CIO. Major IT expenses deal with sustaining the above systems or migrating mainframe projects to web-based, client-server environment using state of the art technology for data access, availability and transfer. Business management processes and supporting financial management processes have evolved to accommodate the evolving program needs and reporting requirements. While NASA can report life-cycle costs for this program and its major projects, it is difficult to trace the entire life-cycle costs history associated with this IT investment. Life-cycle costs reported cover FY 2003 through the planned termination of the program. Rita Willcoxon's Shuttle IT investments comprise approximately 16% of her financial oversight responsibility at KSC. This investment is closely coupled with Shuttle processing. The loss of this investment would require reverting to manual based systems. | | | | _ | | |----|------------------|----------------------|---------------|---------------------| | 9. | Did the Agency's | Executive/Investment | Committee app | prove this request? | 9.a. If "yes," what was the date of this approval? 2008-06-19 10. Did the Program/Project Manager review this Exhibit? 11. Program/Project Manager Name: **Ruth Harrison** Program/Project Manager Phone: 321.867.4343 Program/Project Manager Email: Ruth.M.Harrison@nasa.gov 11.a. What is the current FAC-P/PM certification level of the project/program manager? Senior/Expert/DAWIA-Level 3 11.b. When was the Program/Project Manager Assigned? 2007-08-20 11.c. What date did the Program/Project Manager receive the FACP/PM certification? If the certification has not been issued, what is the anticipated date for certification? 2008-08-08 12. Has the agency developed and/or promoted cost effective, energy-efficient and environmentally sustainable techniques or practices for this project. yes 12.a. Will this investment include electronic assets (including computers)? ves 12.b. Is this investment for new construction or major retrofit of a Federal building or facility? (answer applicable to non-IT assets only) 13. Does this investment directly support one of the PMA initiatives? If yes, select the initiatives that apply: ompetitive Sourding xpanded E-Government nancial Performance 13.a. Briefly and specifically describe for each selected how this asset directly supports the identified initiative(s)? (e.g. If E-Gov is selected, is it an approved shared service provider or the managing partner?) This investment leverages new IT technologies & creates electronic access for program performance. Competitive sourcing is utilized on procurements, unless a procurement official approves sole source justification. Items are prioritized based on risk to Program manifest. Decreased changes in manifest allows for better forecasting and budgetary execution. 14. Does this investment support a program assessed using the Program Assessment Rating Tool (PART)? yes 14.a. If yes, does this investment address a weakness found during the PART review? yes 14.b. If yes, what is the name of the PARTed program? 10000346 - Space Shuttle 14.c. If yes, what rating did the PART receive? Adequate 15. Is this investment for information technology? yes 16. What is the level of the IT Project (per CIO Council's PM Guidance)? Level 2 17. What project management qualifications does the Project Manager have? (per CIO Council's PM Guidance) (1) Project manager has been validated as qualified for this investment 18. Is this investment identified as high risk on the Q4 - FY 2008 agency high risk report (per OMB memorandum M-05-23)? 19. Is this a financial management system? 20. What is the percentage breakout for the total FY2010 funding request for the following? (This should total 100%) **Hardware** 40 **Software** 10 | Services | 50 | |----------|----| | Other | 0 | 21. If this project produces information dissemination products for the public, are these products published to the Internet in conformance with OMB Memorandum 05-04 and included in your agency inventory, schedules and priorities? n/a 22. Contact information of individual responsible for privacy related questions. Name Mark Mason Phone Number 321-867-3014 Title KSC Information Officer Fmail mark.mason@nasa.gov 23. Are the records produced by this investment appropriately scheduled with the National Archives and Records Administration's approval? yes 24. Does this investment directly support one of the GAO High Risk Areas? nο ## **SUMMARY OF SPEND** 1. Provide the total estimated life-cycle cost for this investment by completing the following table. All amounts represent budget authority in millions, and are rounded to three decimal places. Federal personnel costs should be included only in the row designated Government FTE Cost, and should be excluded from the amounts shown for Planning, Full Acquisition, and Operation/Maintenance. The total estimated annual cost of the investment is the sum of costs for Planning, Full Acquisition, and Operation/Maintenance. For Federal buildings and facilities, life-cycle costs should include long term energy, environmental, decommissioning, and/or restoration costs. The costs associated with the entire life-cycle of the investment should be included in this report. All amounts represent Budget Authority (Estimates for BY+1 and beyond are for planning purposes only and do not represent budget decisions) | | PY-1 & Earlier | PY | CY | ВҮ | |---------------------------------|----------------|--------|--------|--------| | | -2007 | 2008 | 2009 | 2010 | | Planning Budgetary Resources | 0 | 0 | 0 | 0 | | Acquisition Budgetary Resources | 0 | 0 | 0 | 0 | | Maintenance Budgetary Resources | 96.8237 | 3.909 | 3.635 | 3.124 | | Government FTE Cost | 0.3552 | 0.2609 | 0.2742 | 0.2834 | | # of FTEs | 3 | 2 | . 2 | 2 | Note: For the cross-agency investments, this table should include all funding (both managing partner and partner agencies). Government FTE Costs should not be included as part of the TOTAL represented. 2. Will this project require the agency to hire additional FTE's? no 3. If the summary of spending has changed from the FY2009 President's budget request, briefly explain those changes. This investment has experienced reductions beginning in FY08 due to requirements descoping associated with retirement in 2010. ## **PERFORMANCE** In order to successfully address this area of the exhibit 300, performance goals must be provided for the agency and be linked to the annual performance plan. The investment must discuss the agency's mission and strategic goals, and performance measures (indicators) must be provided. These goals need to map to the gap in the agency's strategic goals and objectives this investment is designed to fill. They are the internal and external performance benefits this investment is expected to deliver to the agency (e.g., improve efficiency by 60 percent, increase citizen participation by 300 percent a year to achieve an overall citizen participation rate of 75 percent by FY 2xxx, etc.). The goals must be clearly measurable investment outcomes, and if applicable, investment outputs. They do not include the completion date of the module, milestones, or investment, or general goals, such as, significant, better, improved that do not have a quantitative measure. Agencies must use the following table to report performance goals and measures for the major investment and use the Federal Enterprise Architecture (FEA) Performance Reference Model (PRM). Map all Measurement Indicators to the corresponding Measurement Area and Measurement Grouping identified in the PRM. There should be at least one Measurement Indicator for each of the four different Measurement Areas (for each fiscal year). The PRM is available at www.egov.gov. The table can be extended to include performance measures for years beyond the next President's Budget. | | Fiscal
Year | Strategic
Goal
Supported | Measurement
Area | Measurement
Grouping | Measurement
Indicator | Baseline | Planned
Improvement
to the
Baseline | Actual
Results | |---|----------------|---|-----------------------------|--------------------------|--|---|--|-------------------| | 1 | 2007 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Customer
Results | Customer
Satisfaction | End User Satisfaction through the measurement of number of CRs implemented to user's satisfaction. | 100% | 100% | 100% | | 2 | 2007 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Customer
Results | Delivery Time | Annual percentage On- Time Delivery of LPS IT products support both the Programs overall reliability and ensure affordability of the systems | On-time Delivery of LPS IT Products - Standards of Excellence (SOE) = 95% Expectation = 80% Maximum Error Rate (MER) = >80% | Maintain SOE of
95% on-time
delivery each
year from 2005
to 2010 | 100% | | 3 | 2007 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Technology | Service
Availability | Monthly percentage of unplanned or unscheduled outage supports the agency's goal of maintaining high LPS system reliability and helps ensures space access | Availability of systems: Standards of Excellence (SOE) = 99% Maximum Error Rate (MER) = >97% | Maintain 99%
or better
availability each
year from 2005
to 2010 | 100% | | 4 | 2007 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Processes and
Activities | Complaints | Monthly average of 4 or less DRs across released LPS applications supports both the Programs overall reliability and ensures affordability of the systems | Monthly average of 4 or less DRs across released LPS applications Standards of Excellence (SOE) = 4 or less Discrepancy Reports | Maintain SOE of
4 or less
discrepancies
(DRs) against
LPS released
applications
each year from
2005 to 2010 | 3 | | | | | | | | (DRs) | | | |---|------|---|------------------------------------|--------------------------|--|---|--|------| | | | | | | | Expectation
= 5 to 7 DRs
Maximum
Error Rate
(MER) = 8
DRs | | | | 5 | 2007 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Mission and
Business
Results | Space
Operations | Achieve 100% on-orbit mission success for all Shuttle missions. Mission success criteria are those provided to the prime contractor (SPOC) for purposes of determining successful accomplishment of the performance fees in the contract | 100% | 100% | 100% | | 6 | 2008 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Customer
Results | Customer
Satisfaction | End User Satisfaction through the measurement of number of CRs implemented to user's satisfaction. | 100% | 100% | 100% | | 7 | 2008 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Customer
Results | Delivery Time | Annual percentage On- Time Delivery of LPS IT products support both the Programs overall reliability and ensure affordability of the systems | On-time Delivery of LPS IT Products - Standards of Excellence (SOE) = 95% Expectation = 80% Maximum Error Rate (MER) = >80% | Maintain SOE of
95% on-time
delivery each
year from 2005
to 2010 | 100% | | 8 | 2008 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Technology | Service
Availability | Monthly percentage of unplanned or unscheduled outage supports the agencyâ∈™s goal of maintaining high LPS system reliability and helps ensures space access | Availability of systems: Standards of Excellence (SOE) = 99% Maximum Error Rate (MER) = >97% | Maintain 99%
or better
availability each
year from 2005
to 2010 | 100% | | 9 | 2008 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later | Processes and
Activities | Complaints | Monthly average
of 4 or less DRs
across released
LPS applications
supports both the
Programs overall
reliability and | Monthly
average of 4
or less DRs
across
released LPS
applications
Standards of | Maintain SOE of
4 or less
discrepancies
(DRs) against
LPS released
applications
each year from | 3 | | | | than 2010. | | | ensures
affordability of
the systems | Excellence (SOE) = 4 or less Discrepancy Reports (DRs) Expectation = 5 to 7 DRs Maximum Error Rate (MER) = 8 DRs | 2005 to 2010 | | |----|------|---|------------------------------------|--------------------------|--|---|--|------| | 10 | 2008 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Mission and
Business
Results | Space
Operations | Achieve 100% on-orbit mission success for all Shuttle missions. Mission success criteria are those provided to the prime contractor (SPOC) for purposes of determining successful accomplishment of the performance fees in the contract | 100% | 100% | 100% | | 11 | 2009 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Customer
Results | Customer
Satisfaction | End User Satisfaction through the measurement of number of CRs implemented to user's satisfaction. | 100% | 100% | TBD | | 12 | 2009 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Customer
Results | Delivery Time | Annual percentage On- Time Delivery of LPS IT products support both the Programs overall reliability and ensure affordability of the systems | On-time Delivery of LPS IT Products - Standards of Excellence (SOE) = 95% Expectation = 80% Maximum Error Rate (MER) = >80% | Maintain SOE of
95% on-time
delivery each
year from 2005
to 2010 | TBD | | 13 | 2009 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Technology | Service
Availability | Monthly percentage of unplanned or unscheduled outage supports the agency's goal of maintaining high LPS system reliability and helps ensures space access | Availability of systems: Standards of Excellence (SOE) = 99% Maximum Error Rate (MER) = >97% | Maintain 99%
or better
availability each
year from 2005
to 2010 | TBD | | 14 | 2009 | Goal 1: Fly
the Shuttle | Processes and
Activities | Complaints | Monthly average of 4 or less DRs | Monthly average of 4 | Maintain SOE of
4 or less | TBD | | | | as safely as possible until its retirement, not later than 2010. | | | across released
LPS applications
supports both the
Programs overall
reliability and
ensures
affordability of
the systems | or less DRs across released LPS applications Standards of Excellence (SOE) = 4 or less Discrepancy Reports (DRs) Expectation = 5 to 7 DRs Maximum Error Rate (MER) = 8 DRs | discrepancies
(DRs) against
LPS released
applications
each year from
2005 to 2010 | | |----|------|---|------------------------------------|--------------------------|--|--|--|-----| | 15 | 2009 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Mission and
Business
Results | Space
Operations | Achieve 100% on-orbit mission success for all Shuttle missions. Mission success criteria are those provided to the prime contractor (SPOC) for purposes of determining successful accomplishment of the performance fees in the contract | 100% | 100% | TBD | | 16 | 2010 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Customer
Results | Customer
Satisfaction | End User Satisfaction through the measurement of number of CRs implemented to user's satisfaction. | 100% | 100% | TBD | | 17 | 2010 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Customer
Results | Delivery Time | Annual percentage On- Time Delivery of LPS IT products support both the Programs overall reliability and ensure affordability of the systems | On-time Delivery of LPS IT Products - Standards of Excellence (SOE) = 95% Expectation = 80% Maximum Error Rate (MER) = >80% | Maintain SOE of
95% on-time
delivery each
year from 2005
to 2010 | TBD | | 18 | 2010 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Technology | Service
Availability | Monthly percentage of unplanned or unscheduled outage supports the agency's goal of maintaining high LPS system | Availability of systems: Standards of Excellence (SOE) = 99% Maximum Error Rate (MER) = >97% | Maintain 99%
or better
availability each
year from 2005
to 2010 | TBD | | | | | | | reliability and
helps ensures
space access | | | | |----|------|---|------------------------------------|---------------------|--|---|--|-----| | 19 | 2010 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Processes and
Activities | Complaints | Monthly average of 4 or less DRs across released LPS applications supports both the Programs overall reliability and ensures affordability of the systems | Monthly average of 4 or less DRs across released LPS applications Standards of Excellence (SOE) = 4 or less Discrepancy Reports (DRs) Expectation = 5 to 7 DRs Maximum Error Rate (MER) = 8 DRs | Maintain SOE of
4 or less
discrepancies
(DRs) against
LPS released
applications
each year from
2005 to 2010 | TBD | | 20 | 2010 | Goal 1: Fly
the Shuttle
as safely as
possible
until its
retirement,
not later
than 2010. | Mission and
Business
Results | Space
Operations | Achieve 100% on-orbit mission success for all Shuttle missions. Mission success criteria are those provided to the prime contractor (SPOC) for purposes of determining successful accomplishment of the performance fees in the contract | 100% | 100% | TBD | ## EA In order to successfully address this area of the business case and capital asset plan you must ensure the investment is included in the agency's EA and Capital Planning and Investment Control (CPIC) process, and is mapped to and supports the FEA. You must also ensure the business case demonstrates the relationship between the investment and the business, performance, data, services, application, and technology layers of the agency's EA. 1. Is this investment included in your agency's target enterprise architecture? yes 2. Is this investment included in the agency's EA Transition Strategy? yes 2.a. If yes, provide the investment name as identified in the Transition Strategy provided in the agency's most recent annual EA Assessment. KSC Shuttle Processing Support 3. Is this investment identified in a completed (contains a target architecture) and approved segment architecture? yes 3.a. If yes, provide the six digit code corresponding to the agency segment architecture. The segment architecture codes are maintained by the agency Chief Architect. 463-000 4. Identify the service components funded by this major IT investment (e.g., knowledge management, content management, customer relationship management, etc.). Provide this information in the format of the following table. For detailed guidance regarding components, please refer to http://www.whitehouse.gov/omb/egov/. Component: Use existing SRM Components or identify as NEW. A NEW component is one not already identified as a service component in the FEA SRM Reused Name and UPI: A reused component is one being funded by another investment, but being used by this investment. Rather than answer yes or no, identify the reused service component funded by the other investment and identify the other investment using the Unique Project Identifier (UPI) code from the OMB Ex 300 or Ex 53 submission. Internal or External Reuse?: Internal reuse is within an agency. For example, one agency within a department is reusing a service component provided by another agency within the same department. External reuse is one agency within a department reusing a service component provided by another agency in another department. A good example of this is an E-Gov initiative service being reused by multiple organizations across the federal government. Funding Percentage: Please provide the percentage of the BY requested funding amount used for each service component listed in the table. If external, provide the funding level transferred to another agency to pay for the service. | | Agency
Component
Name | Agency Component
Description | Service Type | Component | Reused
Component
Name | Reused
UPI | Internal or External Reuse? | Funding
% | |---|--|---|----------------------------|--|-----------------------------|---------------|-----------------------------|--------------| | 1 | Space &
Ground
Network IT
Support | SPS supports Process Tracking by maintaining the infrastructure including servers, storage and network services | Tracking and
Workflow | Process
Tracking | | | No Reuse | 2 | | 2 | Space &
Ground
Network IT
Support | SPS supports Case / Issue
Management by maintaining
the infrastructure including
servers, storage and
network services | Tracking and
Workflow | Case
Management | | | No Reuse | 3 | | 3 | Space &
Ground
Network IT
Support | SPS supports Risk
Management by maintaining
the infrastructure including
servers, storage and
network services | Management
of Processes | Risk
Management | | | No Reuse | 3 | | 4 | Space &
Ground
Network IT
Support | SPS supports Inbound Correspondence Management by providing the communications tools necessary for budget formulation, planning, resource loading, and execution through an application software interface | Routing and
Scheduling | Inbound
Correspondence
Management | | | No Reuse | 2 | | 5 | Space &
Ground
Network IT
Support | SPS supports Outbound Correspondence Management by providing the communications tools necessary for project planning, resource loading, and execution through an application software interface that notifies team members of their action items to be performed and schedule publication | Routing and
Scheduling | Outbound
Correspondence
Management | | | No Reuse | 2 | | 6 | Space &
Ground
Network IT
Support | SPS supports Project
Management through
interfaces with Microsoft
Project Professional,
contractor 533 data, and
IFMP | Management
of Processes | Program /
Project
Management | | | No Reuse | 4 | | 7 | Space &
Ground
Network IT
Support | SPS supports Workgroup/Groupware by maintaining the infrastructure including servers, storage and network services | Organizational
Management | Workgroup /
Groupware | No Reuse | 8 | |----|--|--|------------------------------|------------------------------------|----------|---| | 8 | Space &
Ground
Network IT
Support | SPS supports Network
Management by maintaining
the infrastructure including
servers, routers, switches
and firewalls | Organizational
Management | Network
Management | No Reuse | 5 | | 9 | Space &
Ground
Network IT
Support | SPS supports Performance
Management by providing
the tools necessary for
budget formulation,
planning, execution, and
reporting through an
application software
interface | Investment
Management | Strategic
Planning and
Mgmt | No Reuse | 2 | | 10 | Space &
Ground
Network IT
Support | SPS supports Performance
Management by providing
the tools necessary for
budget formulation,
planning, execution, and
reporting through an
application software
interface | Investment
Management | Performance
Management | No Reuse | 2 | | 11 | Space &
Ground
Network IT
Support | SPS supports Library /
Storage by maintaining the
infrastructure including
servers, storage and
network services for 20TB
of Ground Support data | Document
Management | Library /
Storage | No Reuse | 5 | | 12 | Space &
Ground
Network IT
Support | SPS supports Document
Review and Approval by
providing an integrated
system for the review and
approval of project
operating plans | Document
Management | Document
Review and
Approval | No Reuse | 2 | | 13 | Space &
Ground
Network IT
Support | SPS supports Modeling by providing for upgrades to the video simulation interface and budget modeling | Knowledge
Discovery | Modeling | No Reuse | 7 | | 14 | Space &
Ground
Network IT
Support | SPS supports Mathematical services by providing the software tools and data formatted for trend analysis | Analysis and
Statistics | Mathematical | No Reuse | 7 | | 15 | Space &
Ground
Network IT
Support | SPS supports
Structural/Thermal services
by providing the resources
necessary for NDE analysis | Analysis and
Statistics | Structural /
Thermal | No Reuse | 3 | | 16 | Space &
Ground
Network IT
Support | SPS supports Radiological
services by providing the
resources necessary for
NDE analysis | Analysis and
Statistics | Radiological | No Reuse | 3 | | 17 | Space &
Ground
Network IT | SPS supports
Graphing/Charting services
by providing the software | Visualization | Graphing /
Charting | No Reuse | 5 | | | Support | tools and data formatted for trend analysis and reporting | | | | | |----|--|--|--------------------------|--------------------------------------|----------|---| | 18 | Space &
Ground
Network IT
Support | SPS supports Imagery by
providing resources for the
KSC Image Analysis facility | Visualization | Imagery | No Reuse | 5 | | 19 | Space &
Ground
Network IT
Support | SPS supports Multimedia by
providing resources for the
KSC Image Analysis facility | Visualization | Multimedia | No Reuse | 4 | | 20 | Space &
Ground
Network IT
Support | SPS supports CAD by
providing resources for
systems design and
engineering. Tools utilized
include Visio, Microstation,
and AutoCad | Visualization | CAD | No Reuse | 7 | | 21 | Space &
Ground
Network IT
Support | SPS supports Demand Forecasting / Management by providing the tools necessary for project managers to resource load Civil Service team members by name in an integrated environment that looks at that team members commitments with other projects to avoid double booking limited resources | Business
Intelligence | Demand
Forecasting /
Mgmt | No Reuse | 4 | | 22 | Space &
Ground
Network IT
Support | SPS supports Balanced
Scorecard by providing
resources and tools for
business process assesment
and scoring | Business
Intelligence | Balanced
Scorecard | No Reuse | 4 | | 23 | Space &
Ground
Network IT
Support | SPS supports Decision Support and Planning by providing the tools necessary for project managers to create a schedule in an integrated environment that allows for resource loading of Civil Service team members by name and looks at that team members commitments with other projects to avoid double booking limited resources. It also provides for tools that facilitate budget prioritization over the 6 year budget window | Business
Intelligence | Decision
Support and
Planning | No Reuse | 2 | | 24 | Space &
Ground
Network IT
Support | SPS supports Information
Retrieval by providing the
tools necessary for effective
retrieval of program
knowledge data | Knowledge
Management | Information
Retrieval | No Reuse | 3 | | 25 | Space &
Ground
Network IT
Support | SPS supports Information
Mapping by providing the
tools necessary for
knowledge information | Knowledge
Management | Information
Mapping /
Taxonomy | No Reuse | 2 | | | | extraction from raw program data | | | | | |----|--|---|-------------------------|---|----------|---| | 26 | Space &
Ground
Network IT
Support | SPS supports Knowledge Capture by providing the tools necessary for knowledge data preservation from raw program data sources | Knowledge
Management | Knowledge
Capture | No Reuse | 2 | | 27 | Space &
Ground
Network IT
Support | SPS supports Knowledge Distribution by providing the tools necessary for knowledge information routing to key program decision makers | Knowledge
Management | Knowledge
Distribution and
Delivery | No Reuse | 3 | | 28 | Space &
Ground
Network IT
Support | SPS supports Knowledge Engineering by providing the tools necessary for design, development and testing of STS program knowledge information management systems | Knowledge
Management | Knowledge
Engineering | No Reuse | 2 | ^{5.} To demonstrate how this major IT investment aligns with the FEA Technical Reference Model (TRM), please list the Service Areas, Categories, Standards, and Service Specifications supporting this IT investment. FEA SRM Component: Service Components identified in the previous question should be entered in this column. Please enter multiple rows for FEA SRM Components supported by multiple TRM Service Specifications. Service Specification: In the Service Specification field, Agencies should provide information on the specified technical standard or vendor product mapped to the FEA TRM Service Standard, including model or version numbers, as appropriate. | | SRM Component | Service Area | Service Category | Service Standard | Service Specification (i.e., vendor and product name) | |---|---|--------------------------------|-------------------------|-----------------------------------|---| | 1 | Computers /
Automation
Management | Service Access and
Delivery | Access Channels | Web Browser | Microsoft Internet Explorer | | 2 | Computers /
Automation
Management | Service Access and
Delivery | Access Channels | Wireless / PDA | Palm OS | | 3 | Task Management | Service Access and
Delivery | Access Channels | Collaboration /
Communications | N/A | | 4 | Data Warehouse | Service Access and
Delivery | Access Channels | Other Electronic
Channels | N/A | | 5 | Computers /
Automation
Management | Service Access and
Delivery | Delivery Channels | Intranet | NISN, KICS | | 6 | Computers /
Automation
Management | Service Access and
Delivery | Delivery Channels | Peer to Peer (P2P) | KICS, NISN | | 7 | Computers /
Automation
Management | Service Access and
Delivery | Delivery Channels | Virtual Private
Network (VPN) | Cisco Systems | | 8 | Data Warehouse | Service Access and
Delivery | Service
Requirements | Hosting | HP Proliant, Dell | | 9 | Computers /
Automation | Service Access and
Delivery | Service Transport | Supporting Network
Services | Cisco Systems | | | Automation
Management | Delivery | | Services | | |----|---|--|----------------------------------|--------------------------------------|---| | 10 | Computers /
Automation
Management | Service Platform and
Infrastructure | Software
Engineering | Test Management | N/A | | 11 | Computers /
Automation
Management | Service Platform and
Infrastructure | Database / Storage | Database | Oracle | | 12 | Computers /
Automation
Management | Service Platform and Infrastructure | Database / Storage | Storage | Storage Tech, EMC | | 13 | Computers /
Automation
Management | Service Platform and Infrastructure | Hardware /
Infrastructure | Servers / Computers | HP Proliant, Dell | | 14 | Computers /
Automation
Management | Service Platform and Infrastructure | Hardware /
Infrastructure | Embedded
Technology Devices | N/A | | 15 | Computers /
Automation
Management | Service Platform and
Infrastructure | Hardware /
Infrastructure | Peripherals | HP Printers, Lanier Printers | | 16 | Computers /
Automation
Management | Service Platform and
Infrastructure | Hardware /
Infrastructure | Video Conferencing | Microsoft Netmeeting | | 17 | Computers /
Automation
Management | Service Platform and
Infrastructure | Hardware /
Infrastructure | Local Area Network
(LAN) | KICS | | 18 | Computers /
Automation
Management | Service Platform and
Infrastructure | Hardware /
Infrastructure | Network Devices /
Standards | Cisco Systems | | 19 | Computers /
Automation
Management | Component
Framework | Security | Certificates / Digital
Signatures | RSA KEON | | 20 | Computers /
Automation
Management | Component
Framework | Security | Supporting Security
Services | ISS | | 21 | Computers /
Automation
Management | Component
Framework | User Presentation /
Interface | Static Display | Microsoft Visio, Powerpoint | | 22 | Computers /
Automation
Management | Component
Framework | User Presentation /
Interface | Dynamic Server-Side
Display | Microsoft IIS Active Server
Pages, Macromedia Coldfusion | | 23 | Computers /
Automation
Management | Component
Framework | User Presentation /
Interface | Content Rendering | Autorender Pro | | 24 | Computers /
Automation
Management | Component
Framework | User Presentation /
Interface | Wireless / Mobile /
Voice | Cingular/Nokia, Samsung | | 25 | Computers /
Automation
Management | Component
Framework | Data Interchange | Data Exchange | N/A | | 26 | Computers /
Automation
Management | Service Interface and Integration | Integration | Middleware | Oracle | | 27 | Computers /
Automation
Management | Service Interface and Integration | Integration | Enterprise Application
Integration | Documentum | |----|---|-----------------------------------|------------------|---------------------------------------|--------------| | 28 | Computers /
Automation
Management | Service Interface and Integration | Interoperability | Data Format /
Classification | Track Studio | | 29 | Computers /
Automation
Management | Service Interface and Integration | Interoperability | Data Types /
Validation | N/A | | 30 | Computers /
Automation
Management | Service Interface and Integration | Interoperability | Data Transformation | N/A | | 31 | Computers /
Automation
Management | Service Interface and Integration | Interface | Service Discovery | N/A | 6. Will the application leverage existing components and/or applications across the Government (i.e., FirstGov, Pay.Gov, etc)? no ## **PART THREE** #### RISK You should perform a risk assessment during the early planning and initial concept phase of the investment's life-cycle, develop a risk-adjusted life-cycle cost estimate and a plan to eliminate, mitigate or manage risk, and be actively managing risk throughout the investment's life-cycle. Answer the following questions to describe how you are managing investment risks. 1. Does the investment have a Risk Management Plan? yes 1.a. If yes, what is the date of the plan? 2007-02-19 1.b. Has the Risk Management Plan been significantly changed since last year's submission to OMB? no ## **COST & SCHEDULE** 1. Was operational analysis conducted? yes 1.a. If yes, provide the date the analysis was completed. 2008-05-09 What were the results of your operational analysis? Launch and Landing tracks performance at a level higher than IT specific investments, which are imbedded in the various budget elements. Continuous operational assessments are performed on capital assets to determine their performance and effectiveness in meeting critical mission operations objectives. A Performance Measurement System is also used to track and monitor monthly key metrics to evaluate the effectiveness, efficiency, productivity, availability, reliability, security, etc. of capital assets. Operations and maintenance costs associated with these capital assets are reviewed monthly in conjunction with the performance metrics to identify any early warning indicators that may impact lifecycle costs and performance goals. These data are used to reprioritize operations and maintenance costs and redirect resources to underperforming assets commensurate with their risk to major operational mission objectives such as flight manifest. In addition to real time redistribution of resources based on measured system performance, the SPS performs an annual survey as part of the Planning, Programming, Budgeting, and Execution (PPBE) process to determine which assets require investment to bring their performance, or sustain their performance, within expected and acceptable operating parameters. This survey of the engineering and operations community seeks technical data on system performance and cost, including cost payback based on investment versus sustained operations and maintenance cost, as well as a system risk assessment that characterizes system risk should the investment not be made versus system risk post investment. Cost. schedule, and risk are used to characterize and prioritize investment candidates during the PPBE process. Considerable weight is given to investments that mitigate significant safety risks. Cost-payback analysis is also considered a significant factor in analyzing which investments the Shuttle Program will make.